Request a call back

Join NOW to get access to exclusive study material for best results

Class 10 SELINA Solutions Maths Chapter 17 - Circles

TopperLearning helps you with chapter-wise Selina solutions according to the latest guidelines of the ICSE board. Here, you have the accurate step-by-step solutions available 24 x 7, letting you indulge in a seamless journey of self-paced learning. All the Class 10 Selina solutions for Maths chapter 17 - Circles are explained chronologically, with adequate diagrams offering proper understanding. 

The Class 10 Selina Solutions for Maths are specifically crafted by professional subject matter experts at TopperLearning who are well-versed with the latest  ICSE Class 10 Math syllabus and have followed all the guidelines keeping the ICSE exam pattern and marking strategy in mind.

Browse the Class 10 Selina solutions for Maths chapter 17 - Circles page and work on individual concepts. Moreover, you will come across no answer that leaves you wondering why. You will find reasonable explanations doing appropriate justice to each step and every answer. 

When preparing for your board exams, you must be extra careful and have a fixed schedule planned to score the maximum grades. And with the entire syllabus, question papers and the right solutions, things get easy.

At TopperLearning, you will also get all the ICSE Class 10 syllabus, previous year's question papers with solutions, video lessons, revision notes, sample papers and solutions in Maths.

For students looking for accurate Selina solutions in Class 10 Biology, Physics, and Chemistry other than Mathematics, TopperLearning has the best resources readily available. As an additional help, here you will find the right outputs for doubts in English, Hindi,  Social Studies and Economics.

Circles Exercise Ex. 17(A)

Solution 1

Solution 2

Solution 3

Solution 4

Solution 5

 

Solution 6

Solution 7

Solution 8

Solution 9

Solution 10

Solution 11

Solution 12

Solution 13

Solution 14

Solution 15

Solution 16

Solution 17

Solution 18

Solution 19

Solution 19(b)

  

ABPQ is a cyclic quadrilateral.

⟹∠A = P …..(Exterior angle property of cyclic quadrilateral) …(1)

ABCD is a parallelogram.

⟹ ∠A = ∠C …..(Opposite angles of a parallelogram) ….. (2)

From (1) and (2),

P = ∠C…..….(3)

But ∠C + ∠D = 180° …. (Sum of interior angles of a parallelogram is 180°)

From (3), we get

∠P + ∠D = 180°

⟹ PCDQ is a cyclic quadrilateral. 

Solution 20

Solution 21

Solution 22

Solution 23

Solution 24

 

Given : space Two space chords space AB space and space CD space intersect space each space other space at space straight P space inside space the space circle. space OA comma
OB comma space OC space and space OD space are space joined.
To space prove : space angle AOC plus angle BOD space equals 2 angle APC
Construction : space Join space AD.
Proof : space Arc space AC space subtends space angle AOC space at space the space centre space and space angle ADC space at space the space remaining space
part space of space the space circle.
angle AOC space equals space 2 angle ADC space...... left parenthesis 1 right parenthesis
Similarly comma
angle BOD space equals space 2 angle BAD....... left parenthesis 2 right parenthesis
Adding space left parenthesis 1 right parenthesis space and space left parenthesis 2 right parenthesis comma
angle AOC space plus angle BOD space equals space 2 angle ADC space plus 2 angle BAD
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space equals 2 left parenthesis angle ADC plus angle BAD right parenthesis....... left parenthesis 3 right parenthesis
But space in space increment PAD comma
Ext. space angle APC equals angle PAD plus angle ADC
space space space space space space space space space space space space space space space space space space space space space equals angle BAD space plus angle ADC space space space space space space space space space space space space space space......... left parenthesis 4 right parenthesis
From space left parenthesis 3 right parenthesis space and space left parenthesis 4 right parenthesis comma
angle AOC space plus angle BOD space equals 2 angle APC

Solution 25

Solution 26

Solution 27

Solution 28

Solution 29

Solution 30

Solution 31

Solution 32

Solution 33

Solution 34

Solution 35

Solution 36

Solution 37



(i) angleAEB = 90 to the power of 0

(Angle in a semicircle is a right angle)

Therefore angle EBA = 90 to the power of 0 - angleEAB = 90 to the power of 0 - 63 to the power of 0= 27 to the power of 0


(ii) AB parallel to ED

Therefore angle DEB = EBA = 27 to the power of 0                        (Alternate angles)

Therefore BCDE is a cyclic quadrilateral

Therefore angle DEB  angleBCD = 180 to the power of 0

[Pair of opposite angles in a cyclic quadrilateral are supplementary]

Therefore angle BCD = 180 to the power of 0 - 27 to the power of 0 = 153 to the power of 0


Solution 38

Solution 39

Solution 40

Solution 41

Solution 42

Solution 43

Solution 44

Solution 45

Solution 46

Solution 47

Solution 48

Solution 49

  1. ABCD is a cyclic quadrilateral

mDAB = 180° - DCB

= 180° - 130°

= 50°

  1. In ∆ADB,

mDAB + mADB + mDBA = 180°

50° + 90° + mDBA = 180°

mDBA = 40°

Solution 50

Solution 51

Solution 52

Solution 53

Solution 54

Solution 55

Solution 56

Solution 57

Circles Exercise Ex. 17(B)

Solution 1

 

Solution 2

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.


Solution 3

 

Solution 4

 

Solution 5

 

Solution 6

Solution 7

 

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 8

 

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 9

Solution 10

 

 

Circles Exercise Ex. 17(C)

Solution 1

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 2

G i v e n space minus space I n space t h e space f i g u r e space A B C space i s space a space t r i a n g l e space i n space w h i c h space angle A equals 30 degree.
T o space p r o v e minus B C space i s space t h e space r a d i u s space o f space c i r c u m c i r c l e space o f space increment A B C space w h o s e space c e n t r e
i s space O.
C o n s t r u c t i o n minus J o i n space O B space a n d space O C.
P r o o f :
angle B O C equals 2 angle B A C equals 2 cross times 30 degree equals 60 degree
N o w space i n space increment O B C comma
O B equals O C space space space space space space space space space space space space space left square bracket R a d i i space o f space t h e space s a m e space c i r c l e right square bracket
angle O B C equals angle O C B
B u t comma space i n space increment B O C comma
angle O B C plus angle O C B plus angle B O C equals 180 degree space space left square bracket A n g l e s space o f space a space t r i a n g l e right square bracket
rightwards double arrow angle O B C plus angle O B C plus 60 degree equals 180 degree
rightwards double arrow 2 angle O B C plus 60 degree equals 180 degree
rightwards double arrow 2 angle O B C equals 180 degree minus 60 degree
rightwards double arrow 2 angle O B C equals 120 degree
rightwards double arrow angle O B C equals fraction numerator 120 degree over denominator 2 end fraction equals 60 degree
rightwards double arrow angle O B C equals angle O C B equals angle B O C equals 60 degree
rightwards double arrow increment B O C space i s space a n space e q u i l a t e r a l space t r i a n g l e.
rightwards double arrow B C equals O B equals O C
B u t comma space O B space a n d space O C space a r e space t h e space r a d i i space o f space t h e space c i r c u m minus c i r c l e.
therefore B C space i s space a l s o space t h e space r a d i u s space o f space t h e space c i r c u m minus c i r c l e.

Solution 3


Given - In Δ ABC, AB = AC and a circle with AB as diameter is drawn which intersects the side BC at D.

To prove - D is the midpoint of BC.

Construction - Join AD. 

Proof:

 ∠1 = 90° [Angle in a semi circle]

But ∠1 + ∠2 = 180° [Linear pair]

∴ ∠2 = 90°

Now in right ΔABD and Δ ACD,

Hyp. AB = Hyp. AC [Given]

Side AD = Ad [Common]

∴ By the Right angle - Hypotenuse - Side criterion of congruence, we have

Δ ABD ≅ ΔACD [RHS criterion of congruence]

The corresponding parts of the congruent triangles are congruent.

∴ BD = DC [c.p.c.t]

Hence D is the mid point of BC.

Solution 4

Join OE.

Arc EC subtends EOC at the centre and EBC at the remaining part of the circle. 

EOC = 2 EBC = 2 × 65° = 130°.

Now in Δ OEC, OE = OC [Radii of the same circle] 

∴ OEC = OCE 

But, in Δ EOC,

OEC + OCE + EOC = 180° [Angles of a triangle] 

⇒ OCE + OCE + EOC = 180° 

⇒ OCE + 130° = 180° 

⇒ OCE = 180° - 130° 

⇒ OCE + 5 

⇒ OCE = begin mathsize 12px style fraction numerator 50 degree over denominator 2 end fraction end style= 25° 

∴ AC || ED  [given]

∴ DEC = OCE  [Alternate angles]

⇒ DEC = 25°

Solution 5

 

Given - ABCD is a cyclic quadrilateral and PRQS is a quadrilateral formed by the angle.

Bisectors of angle A, B, C and D.

To prove - PRQS is a cyclic quadrilateral.

Proof - In Δ APD, 

PAD + ADP + APD = 180°   ......(1)

Similarly, in Δ BQC,

QBC + BCQ + BQC = 180° ......(2)

Adding (1) and (2), we get

PAD + ADP + APD + QBC + BCQ + BQC =  180° + 180°

 PAD + ADP + QBC + BCQ + APD + BQC =  360° ....(3)

But PAD + ADP + QBC + BCQ = 1/2 [A + B + C + D]

= 1/2 × 360° = 180°

∴ APD + ∠BQC = 360° - 180° = 180°    [from (3)]

But these are the sum of opposite angles of quadrilateral PRQS.

∴ Quad. PRQS is a cyclic quadrilateral.

Solution 6

  

Solution 7

Solution 8

I n space c y c l i c space q u a d. space A B C D comma
A F parallel to C B space a n d space D A space i s space p r o d u c e d space t o space E space s u c h space t h a t space angle A D C equals 92 degree space a n d space angle F A E equals 20 degree
N o w space w e space n e e d space t o space f i n d space t h e space m e a s u r e space o f space angle B C D
I n space c y c l i c space q u a d. space A B C D comma
angle B plus angle D equals 180 degree
rightwards double arrow angle B plus 92 degree equals 180 degree
rightwards double arrow angle B equals 180 degree minus 92 degree
rightwards double arrow angle B equals 88 degree
S i n c e space A F parallel to C B comma space angle F A B equals angle B equals 88 degree
B u t comma space angle F A E equals 20 degree space space space space space left square bracket g i v e n right square bracket
E x t. angle B A E equals angle B A F plus angle F A E
equals 88 degree plus 22 degree equals 108 degree
B u t comma space E x t. angle B A E equals angle B C D
therefore angle B C D equals 108 degree

Solution 9

Solution 10

Solution 11

Solution 12

A r c space A C space s u b t e n d s space angle A O C space a t space t h e space c e n t r e space a n d space angle A D C space a t space t h e space r e m a i n i n g space p a r t
o f space t h e space c i r c l e
therefore angle A O C equals 2 angle A D C
rightwards double arrow angle A O C equals 2 cross times 32 degree equals 64 degree
S i n c e space angle A O C space a n d space angle B O C space a r e space l i n e a r space p a i r comma space w e space h a v e
angle A O C plus angle B O C equals 180 degree
rightwards double arrow 64 degree plus angle B O C equals 180 degree
rightwards double arrow angle B O C equals 180 degree
rightwards double arrow angle B O C equals 180 degree minus 64 degree
rightwards double arrow angle B O C equals 116 degree

Solution 13

Solution 14

 

Solution 15

G i v e n minus I n space a space c i r c l e comma space A B C D space i s space a space c y c l i c space q u a d r i l a t e r a l space A B space a n d space D C
a r e space p r o d u c e d space t o space m e e t space a t space E space a n d space B C space a n d space A D space a r e space p r o d u c e d space t o space m e e t space a t space F.
angle D C F : angle F : angle E equals 3 : 5 : 4
L e t space angle D C F equals 3 X comma angle F equals 5 x comma angle E equals 4 x
N o w comma space w e space h a v e space t o space f i n d comma angle A comma angle B comma angle C space A N D space angle D
I n space c y c l i c space q u a d. space A B C D comma space B C space i s space p r o d u c e d.
therefore angle A equals angle D C F equals 3 x
I n space increment C D F comma
E x t. angle C D A equals angle D C F plus angle F equals 3 x plus 5 x equals 8 x
I n space increment B C E comma
E x t. angle A B C equals angle B C E plus angle E space space space space space space space space left square bracket angle B C E equals angle D C F comma v e r t i c a l l y space o p p o s i t e space a n g l e s right square bracket
equals angle D C F plus angle E
equals 3 x plus 4 x equals 7 x
N o w comma space i n space c y c l i c space q u a d. A B C D comma
sin c e comma angle B plus angle D equals 180 degree
space space space space space space space space space space space space space space space space space space space space space left square bracket S i n c e space s u m space o f space o p p o s i t e space o f space a space c y c l i c space q u a d r i l a t e r a l space a r e space s u p p l e m e n t a r y right square bracket
rightwards double arrow 7 x plus 8 x equals 180 degree
rightwards double arrow 15 x equals 180 degree
rightwards double arrow x equals fraction numerator 180 degree over denominator 15 end fraction equals 12 degree
therefore angle A equals 3 x equals 3 cross times 12 degree equals 36 degree
angle B equals 7 x equals 7 cross times 12 degree equals 84 degree
angle C equals 180 degree minus angle A equals 180 degree minus 36 degree equals 144 degree
angle D equals 8 x equals 8 cross times 12 degree equals 96 degree

Solution 16

Solution 17


G i v e n minus I n space a space c i r c l e space w i t h space c e n t r e space O comma space A B space i s space t h e space d i a m e t e r space a n d space A C space a n d space
A D space a r e space t w o space c h o r d s space s u c h space t h a t space A C equals A D.
T o space p r o v e : left parenthesis i right parenthesis space a r c space B C equals a r c space D B
left parenthesis i i right parenthesis space A B space i s space t h e space b i s e c t o r space o f space angle C A D
left parenthesis i i i right parenthesis space I f space a r c space A C equals 2 a r c space B C comma space t h e n space f i n d
space space space space space space space space space space space left parenthesis a right parenthesis angle B A C space space left parenthesis b right parenthesis angle A B C
C o n s t r u c t i o n space : space J o i n space B C space a n d space B D
P r o o f : space I n space r i g h t space a n g l e d space increment A B C space a n d space increment A B D
S i d e space A C equals A D space space space space space space space space space space space space space space left square bracket g i v e n right square bracket
H y p. space A B equals A B space space space space space space space space space space space space space space space left square bracket c o m m o n right square bracket
therefore B y space R i g h t space A n g l e minus H y p o t e n u s e minus S i d e space c r i t e r i o n space o f space c o n g r u e n c e comma
increment A B C approximately equal to increment A B D
left parenthesis i right parenthesis space T h e space c o r r e s p o n d i n g space p a r t s space o f space t h e space c o n g r u e n t space t r i a n g l e s space a r e space c o n g r u e n t.
therefore B C equals B D space space space space space space space space space space space space space space space space left square bracket c. p. c. t right square bracket
therefore A r c space B C equals A r c B D space space space space space space left square bracket e q u a l space c h o r d s space h a v e space e q u a l space a r c s right square bracket
left parenthesis i i right parenthesis space angle B A C equals angle B A D
therefore A B space i s space t h e space b i s e c t o r space o f space angle C A D
left parenthesis i i i right parenthesis space I f space A r c space A C equals 2 space a r c space B C comma
t h e n space angle A B C equals 2 angle B A C
B u t space angle A B C plus angle B A C equals 90 degree
rightwards double arrow 2 angle B A C plus angle B A C equals 90 degree
rightwards double arrow 3 angle B A C equals 90 degree
rightwards double arrow angle B A C equals fraction numerator 90 degree over denominator 3 end fraction equals 30 degree
angle A B C equals 2 angle B A C rightwards double arrow angle A B C equals 2 cross times 30 degree equals 60 degree

Solution 18

A B C D space i s space a space c y c l i c space q u a d r i l a t e r a l space a n d space A D equals B C
angle B A C equals 30 degree comma angle C B D equals 70 degree
W e space h a v e
angle D A C equals angle C B D space space space space space space space space space space space space space left square bracket a n g l e s space i n space t h e space s a m e space s e g m e n t right square bracket
rightwards double arrow angle D A C equals 70 degree space space space space space space space space space space space space space space left square bracket because angle C B D equals 70 degree right square bracket
rightwards double arrow angle B A D equals angle B A C plus angle D A C equals 30 degree plus 70 degree equals 100 degree space space..... left parenthesis 1 right parenthesis
S i n c e space t h e space s u m space o f space o p p o s i t e space a n g l e s space o f space c y c l i c space q u a d r i l a t e r a l space i s space s u p p l e m e n t a r y
angle B A D plus angle B C D equals 180 degree
rightwards double arrow 100 degree plus angle B C D equals 180 degree space space space space space space space space left square bracket f r o m space left parenthesis 1 right parenthesis right square bracket
rightwards double arrow angle B C D equals 180 degree minus 100 degree equals 80 degree
S i n c e space A D equals B C comma angle A C D equals angle B D C space space space left square bracket E q u a l space c h o r d s space s u b t e n d s space e q u a l space a n g l e s right square bracket
B u t space angle A C B equals angle A D B space space space space left square bracket a n g l e s space i n space t h e space s a m e space s e g m e n t right square bracket
therefore angle A C D plus angle A C B equals angle B D C plus angle A D B
rightwards double arrow angle B C D equals angle A D C equals 80 degree
B u t space i n space increment B C D comma
angle C B D plus angle B C D plus angle B D C equals 180 degree space space space space space space space space left square bracket a n g l e s space o a f space a space t r i a n g l e right square bracket
rightwards double arrow 70 degree plus 80 degree plus angle B D C equals 180 degree
rightwards double arrow 150 degree plus angle B D C equals 180 degree
therefore angle B D C equals 180 degree minus 150 degree equals 30 degree
rightwards double arrow angle A C D equals 30 degree space space space space space space space space space space space space space space space space space space left square bracket because angle A C D equals angle B D C right square bracket
therefore angle B C A equals angle B C D minus angle A C D equals 80 degree minus 30 degree equals 50 degree
S i n c e space t h e space s u m space o f space o p p o s i t e space a n g l e s space o f space c y c l i c space q u a d r i l a t e r a l space i s space s u p p l e m e n t a r y comma
angle A D C plus angle A B C equals 180 degree
rightwards double arrow 80 degree plus angle A B C equals 180 degree
rightwards double arrow angle A B C equals 180 degree minus 80 degree equals 100 degree

Solution 19

 

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 20

 

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 21

Syntax error from line 1 column 49 to line 1 column 73. Unexpected '<mstyle '.

Solution 22

Given - In the figure, CP is the bisector of ABC

To prove - DP is the bisector of ADB

Proof - Since CP is the bisector of ACB

∴ ACP = BCP

But ACP = ADP [Angles in the same segment of the circle]

and BCP = BDP

But ACP = BCP

∴ ADP = BDP

∴ DP is the bisector of ADB

Solution 23

Solution 24

i. AD is parallel to BC, i.e., OD is parallel to BC and BD is transversal.

 

 

Solution 25

DAE and DAB are linear pair

So,

DAE + DAB = 180°

 DAB = 110°

Also,

BCD + DAB = 180°……Opp. Angles of cyclic quadrilateral BADC

 BCD = 70°

BCD =  BOD…angles subtended by an arc on the center and on the circle

 BOD = 140°

In ΔBOD,

OB = OD……radii of same circle

So,

OBD =ODB……isosceles triangle theorem

OBD + ODB + BOD = 180°……sum of angles of triangle

2OBD = 40° 

OBD = 20° 

Get Latest Study Material for Academic year 24-25 Click here
×